Система обозначений фотоэлектронных и оптоэлектронных приборов. Московский государственный университет печати

Источники оптического излучения, используемые в оптоэлектронике, вообще говоря, весьма разнообразны. Однако большинство из них (сверхминиатюрные накальные и газоразрядные лампочки, порошковые и пленоч­ные электролюминесцентные излучатели, вакуумные катодолюминофорные и многие другие виды) не удовле­творяют всей совокупности современных требований и находят применение лишь в отдельных устройствах, главным образом в индикаторных приборах и отчасти в оптронах.

При оценке перспективности того или иного источни­ка определяющую роль играет агрегатное состояние активного светящегося вещества (или вещества, заполняющего рабочий объем). Из всех возможных вариан­тов (вакуум, газ, жидкость, твердое тело) предпочте­ние отдается твердотельному веществу, а «внутри» него – монокристаллическому как обеспечивающему наибольшую долговечность и надежность приборов.

Фундамент оптоэлектроники образуют две группы излучателей:

1) оптические генераторы когерентного излучения (лазеры), среди которых следует выделить полупровод­никовые лазеры;

1) светоизлучающие полупроводниковые диоды, осно­ванные на принципе спонтанной инжекционной электро­люминесценции.

Оптоэлектронный полупроводниковый прибор – это полупроводниковый прибор, излучающий или преобразующий электромагнитное излучение, чувствительный к этому излучению в видимой, инфракрасной и (или) ультрафиолетовой областях спектра или использующий подобное излучение для внутреннего взаимодействия его элементов.

Оптоэлектронные полупроводниковые приборы можно подраз­делить на полупроводниковые излучатели, приемники излучения, оптопары и оптоэлектронные интегральные микросхемы (рис. 2.1).

Полупроводниковый излучатель – это оптоэлектронный полупроводниковый прибор, преобразующий электрическую энергию в энергию электромагнитного излучения в видимой, инфракрасной и ультрафиолетовой областях спектра.

Многие полупроводниковые излучатели могут излучать только некогерентные электромагнитные колебания. К ним относятся полупроводниковые излучатели видимой области спектра – полупроводниковые приборы отображения информации (свето-излучающие диоды, полупроводниковые знаковые индикаторы, шкалы и экраны), а также полупроводниковые излучатели инфракрасной области спектра – инфракрасные излучающие диоды.

Когерентные полупроводниковые излучатели – это полупро­водниковые лазеры с различными видами возбуждения. Они могут излучать электромагнитные волны с определенной ампли­тудой, частотой, фазой, направлением распространения и поля­ризацией, что и соответствует понятию когерентности.

Оптоэлектроника — это отрасль электроники, посвященной теории и практике создания приборов и устройств, основанных на преобразовании электрических сигналов в оптические и наоборот.

В оптоэлектронике используется диапазон длин волн 0,2 мкм — 0,2 мм. Оптоэлектронный прибор — это совокупность источника и приемника излучения. В качестве источника излучения применяют светодиоды на основе GaAs, как фотоприемники — фотодиоды и фототранзисторы на основе Si.

Отличительной и особенностью оптоэлектронных приборов (ОЭП) от других является то, что в них оптически связаны, но электрически изолированы друг от друга. Благодаря этому легко обеспечивается согласованность высоко- и низковольтных и высокочастотных цепей.

Оптоэлектроника развивается по двум независимым направлениям:

  1. Оптическое;
  2. Электронно-оптическое.

Оптическое направление базируется на эффектах взаимодействия твердого тела с электромагнитным излучением (голография, фотохимия, электрооптика). Электронно-оптическое направление использует принцип фотоэлектрического преобразования при внутреннем фотоэффекте с одной стороны, и фотолюминесценции — с другой (замена гальванической и магнитной связи на оптическую, оптоволоконные линии связи).

На оптоэлектронном принципе могут быть созданы безвакуумные аналоги электронных устройств и систем:

  • дискретные и аналоговые преобразователи электрических сигналов (усилители, генераторы, ключевые элементы, элементы памяти, логические схемы, линии задержки и др.)
  • преобразователи оптических сигналов (усилители света и изображения, плоские экраны, которые передают и воспроизводят изображение)
  • устройства воспроизведения (индикаторные экраны, цифровые табло, картинная логика и др.).

Основными факторами, которые обусловливают развитие оптоэлектроники, являются:

  • разработка сверхчистых материалов,
  • разработка совершенной технологии новых современных приборов и устройств,
  • подготовка высококвалифицированных кадров.

Для изготовления активных и пассивных элементов оптоэлектроники широко применяются:

  • полупроводниковые материалы, редкоземельные и их сплавы,
  • диэлектрические соединения,
  • пленочные материалы,
  • фоторезисты,
  • диффузанты.

В настоящее время номенклатура материалов, используемых в оптоэлектронике достаточно широка. К ним относятся вещества высокой чистоты, чистые металлы и сплавы со специальными электрофизическими свойствами, диффузанты, различные полупроводниковые соединения в виде порошков и монокристаллов, монокристаллические пластины из кремния, арсенида и фосфида галлия, фосфида индия, сапфир, гранат, различные вспомогательные материалы — технологические газы, фоторезисты, абразивные порошки и др.

Важнейшими материалами оптоэлектроники является такие вещества, как: GaAs, BaF 2 , CdTe (для изготовления подложек) структуры GaAlAs / GaAs / GaAlAs (электрооптические модуляторы) SiO 2 (материал для изоляции), Si, CdHgTe, PbSnSe (фотодиоды, фототранзисторы). В некоторых ИМС используются Ni, Cr, и Ag. Технология производства оптоэлектронных интегральных микросхем (ОЭИМС) постоянно совершенствуется на основе разработки новых физико-технологических процессов.

ОЭП имеют следующие преимущества:

  • возможность пространственной модуляции световых пучков и их значительного пересечения при отсутствии гальваническим связей между каналами;
  • большую функциональную нагрузку световых пучков благодаря возможности изменения многих их параметров (амплитуды, направления, частоты, фазы, поляризации).

Оптоэлектронные приборы — это приборы, принцип действия которых построен на использовании электромагнитного излучения оптического диапазона.

К основным группам оптоэлектронных приборов относят следующие:

  • светоизлучающие диоды и лазеры;
  • фотоэлектрические приемники излучения — фоторезисторы и фотоприемники с р-n-переходом;
  • приборы, управляющие излучением — модуляторы, дефлекторы и др.; приборы для отображения информации — индикаторы;
  • приборы для электрической изоляции — оптроны;
  • оптические каналы связи и оптические запоминающие устройства.

Вышеперечисленные группы приборов осуществляют генерацию, преобразование, передачу и хранение информации. Носителями информации в оптоэлектронике являются нейтральные в электрическом смысле частицы — фотоны, которые нечувствительны к воздействию электрических и электромагнитных полей, не взаимодействуют между собой и создают однонаправленную передачу сигнала, что обеспечивает высокую помехозащищенность и гальваническую развязку входных и выходных цепей. Оптоэлектронные приборы принимают, превращают и генерируют излучение в видимой, инфракрасной и ультрафиолетовой областях спектра.

Принцип действия оптоэлектронных приборов основан на использовании внешнего или внутреннего фотоэффекта.

Внешним фотоэффектом называется выход свободных электронов из поверхностного слоя фотокатода во внешнюю среду под действием света.

Внутренним фотоэффектом называется свободное перемещение внутри вещества электронов, освобожденных от связей в под действием света, и изменяющих его электропроводность или даже вызывающих появление ЭДС на границе двух веществ (р-n-переходе).

ОЭП нашли широкое применение в автоматических контрольных и измерительных системах, вычислительной технике, фототелеграфии, звуковоспроизводящей аппаратуре, кинематографии, спектрофотометрии, для преобразования световой энергии в электрическую, в автоматике для решения электрических цепей.

Оптрон

Оптрон — полупроводниковый прибор, в котором конструктивно объединены источник и приемник излучения, связанные между собой оптической связью. В источнике излучения электрические сигналы превращаются в световые, действующих на фотоприемник и создают в нем опять же электрические сигналы. Если оптрон имеет только один излучатель и один приемник излучения, то его называют оптопарой или элементарным оптроном.

Микросхема, состоящая из одной или нескольких оптопар с дополнительными устройствами для согласования и усиления сигнала, называется оптоэлектронной интегральной микросхемой. На входе и выходе оптрона всегда используются электрические сигналы, а связь входа и выхода происходит благодаря световому сигналу.

Фоторезистор

Фоторезисторы — это полупроводниковые резисторы, изменяющие свое сопротивление под воздействием светового потока. В зависимости от спектральной чувствительности фоторезисторы делят на две группы: для видимой части спектра и для инфракрасной части спектра. Для изготовления фоторезисторов используют соединения Cd и Pb . Чувствительные элементы изготавливают из монокристаллов или поликристаллов этих соединений.

Обозначение фоторезисторов ранних выпусков:

  • 1 элемент — буквы, обозначающие тип прибора (ФС — фотосопротивление),
  • 2 элемент — буква, обозначающая материал светочувствительного элемента (А — сернистый свинец, К — сернистый кадмий, Д — селенистий кадмий),
  • 3 элемент — цифра, которая обозначает тип конструктивного исполнения.
  • буква Б перед цифрой — герметичный вариант исполнения,
  • П — пленочный материал фоточувствительного элемента,
  • М — монокристаллический материал фоточувствительного элемента.
  • буква Т — тропический вариант, предназначенный для эксплуатации в условиях повышенных температур и влажности.
Принцип строения и схема включения фоторезистора

Обозначение современных фоторезисторов:

  • 1 элемент — буквы, обозначающие тип прибора (СФ — сопротивление фоточувствительное),
  • 2 элемент — цифра, которая означает материал светочувствительного элемента (2 — сернистый кадмий, 3 — селенистий кадмий, 4 — селенистый свинец),
  • 3 элемент — цифра, которая означает порядковый номер разработки.

Фоторезисторы имеют высокую стабильность параметров. Изменение фототока является достаточно точной характеристикой его состояния. При длительной эксплуатации наблюдается стабилизация фототока, при этом его величина может изменяться на 20 — 30%. Фоторезисторы чувствительны к быстрой смене температур. Хранить фоторезисторы следует при 5 — 35 о С и влажности не более 80%.

К основным параметрам фоторезисторов относят:

  1. Темновой ток (I т ) — ток, проходящий через фоторезистор при рабочем напряжении через 30 с после снятия освещенности 200 лк.
  2. Световой ток (I с) — ток, проходящий через фоторезистор при рабочем напряжении и освещенности 200 лк от источника света с цветовой температурой 2850 К.
  3. Температурный коэффициент фототока (ТК I ф ) — изменение фототока при изменении температуры фоторезистора на 1 о С.
  4. Рабочее напряжение (U ф ) — напряжение, которое можно приложить к фоторезистора при длительной эксплуатации без изменения его параметров сверх допустимого.
  5. Темновой сопротивление (R т ) — сопротивление фоторезистора при температуре 20 о С через 30 с после снятия освещенности 200 лк.
  6. Удельный чувствительность (К 0 ) — отношение фототока к произведению величин светового потока, падающего на него и приложенного напряжения: К 0 = I ф / (Ф U ф ) , где Ф — световой поток, лм.
  7. Постоянная времени (t ) — время, в течение которого фототок изменяется на нормированную величину при его освещении.
  8. Мощность рассеяния (Р рас .) — максимально допустимая мощность, фоторезистор может рассеивать при непрерывном электрическом погрузке и температуре окружающей среды, не изменяя параметров сверх нормы, установленной техническими условиями.
  9. Сопротивление изоляции (R и ).
  10. Длинноволновая граница (l ).

Основными характеристиками фоторезисторов являются:

  1. Вольт-амперная (I = f (U )) — зависимость светового, темнового или фототока (при Ф = const ) от приложенного напряжения.
  2. Световая или люкс-амперная (I = f (Е)) — зависимость фототока от светового потока, падающего или освещенности (при U = const ).
  3. Спектральная (I = f (l )) — зависимость фототока от длины волны светового потока (при U = const ).
  4. Частотная (I Ф = f (F Ф)) — зависимость фототока от частоты модуляции светового потока (при U = const).

Высокая интегральная чувствительность позволяет использовать резисторы даже без усилителей, а малые габариты являются причинами их широкого применения.Основные недостатки фоторезисторов — их инерционность и сильное влияние температуры, приводит к большому разбросу характеристик.

Фотодиод

Фотодиоды это полупроводниковые диоды, в которых используется внутренний фотоэффект. Световой поток управляет обратным током фотодиодов. Под действием света на электронно-дырочный переход происходит генерация пар носителей заряда, проводимость диода растет и увеличивается обратный ток. Такой режим работы называется фотодиодным режимом. Второй тип режима — фотогенераторный. В отличие от фотогенераторного для фотодиодного режима необходимо использовать внешний источник питания.

Схема включения фотодиода для работы в фотодиодном режиме

Основные параметры фотодиодов:

  • интегральная чувствительность (~ 10 мА / лм): рабочее напряжение (10 — 30 В);
  • темновой ток (~ 2 — 20 мкА).

Основные характеристики фотодиодов:

  • вольт-амперная (I = f (U)) — зависимость светового, темнового или фототока (при Ф = const) от приложенного напряжения;
  • энергетическая (I Ф = f (Ф)) — зависимость фототока от светового потока (при U = const ) — линейная, мало зависит от напряжения.

Вольт-амперные характеристики фотодиода для фотодиодного режима

В лавинных фотодиодах происходит лавинное размножения носителей в p-n переходе и за счет этого в десятки раз возрастает чувствительность. Фотодиоды с барьером Шоттки имеют высокое быстродействие. Фотодиоды с гетеропереходами работают как генераторы ЭДС. Германиевые фотодиоды используют как индикаторы инфракрасного излучения; кремниевые — для преобразования световой энергии в электрическую (солнечные батареи для автономного питания различной аппаратуры в космосе) селеновые — для изготовления фотоэкспонометров и свето-технических измерений, поскольку их спектральная характеристика близка к спектральной характеристики глаза человека.

Фототранзистор

Фототранзисторы — это полупроводниковые приборы с двумя p-n переходами, предназначенные для преобразования светового потока в электрический ток. От обычного биполярного транзистора фототранзистор конструктивно отличается тем, что в его корпусе предусмотрено прозрачное окно, через которое свет может попадать на область базы.

Напряжение питания подается на эмиттер и коллектор, его коллекторный переход оказывается закрытым, а эмиттерный — открытым. База остается свободной. При освещении фототранзистора в его базе генерируются электроны и дырки. В коллекторном переходе происходит распределение электронно-дырочных переходов, достигших в результате диффузии, границы перехода. Дыры (неосновные носители зарядов в полупроводнике), перебрасываются полем перехода в коллектор, увеличивая его собственный ток, а электроны (основные носители зарядов) остаются в базе, снижая ее потенциал. Снижение потенциала базы приводит к образованию дополнительной прямого напряжения на эмиттерном переходе и усиления инжекции дырок из эмиттера в базу. Инжектированных в базу дырки, достигая коллекторного перехода, вызывают дополнительное увеличение тока коллектора.


Структурная схема биполярного фототранзистора со свободной базой (а) и схема включения фототранзистора (б)

Ток коллектора освещенного фототранзистора оказывается достаточно большим; отношение светового тока к темнового достигает нескольких сотен.

Применяют два варианта включения фототранзисторов:

  • диодное — с использованием только двух выводов (эмиттера и коллектора)
  • транзисторное — с использованием трех выводов, когда на вход подают не только световой, но и электрический сигнал.

В оптоэлектронике, автоматике и телемеханике фототранзисторы используют для тех же целей, что и фотодиоды, но они уступают им по порогу чувствительности и температурному диапазону. Чувствительность фототранзисторов растет с интенсивностью их освещения.

Фототиристор

Фототиристор — это полупроводниковый прибор с четырехслойной p-n-p-n структурой, который сочетает в себе свойства тиристора и фотоприемника и преобразует световую в электрическую.

При отсутствии светового сигнала и управляющего тока фототиристор закрыт и через него проходит только темновой ток. Открывается фототиристор световым потоком, который поступает на базы p 2 и n 1 через «окно» в его корпусе и создает электронно-дырочные пары. Это приводит к возникновению первичных фототоков и образования общего фототока. Из этого следует, что при поступлении светового потока на базы p 2 и n 1 возрастает эмиттерный ток, коэффициент передачи тока α от эмиттера к коллектору является функцией освещенности, которая меняет ток p-n nepexoда. Сопротивление фототиристора изменяется в пределах от 0,1 Ом (в открытом состоянии) до 10 8 Ом (в закрытом), а время переключения составляет величину 10 -5 — 10 -6 с.


Структура фототиристора

Из световой характеристики I пр. = F (Ф) при U пр. = Const видно, что при включении фототиристора ток через него возрастает до I пр. = Е пр. / R нагр. и больше не меняется, то есть фототиристор имеет два стабильных состояния и может быть использован как элемент памяти. По вольтамперной характеристике I пр. = F (U пр. ) при Ф = const (Ф 2 > Ф1> Фо) видно, что с увеличением светового потока напряжение и время включения уменьшаются.


Характеристики фототиристора: а — световая, б — ВАХ, в — зависимость времени включения от светового потока

Преимуществами фототиристоров являются:

  • высокая погрузочная способностью при малой мощности управляющего сигнала;
  • возможность получать необходимый исходный сигнал без дополнительных каскадов усиления;
  • наличие памяти, то есть поддержка открытого состояния после снятия управляющего сигнала;
  • большая чувствительность;
  • высокое быстродействие.

Вышеуказанные свойства фототиристоров позволяют упростить схемы, исключив из них усилители и релейные элементы, что очень важно в промышленной электронике, например в высоковольтных преобразователях. Чаще всего фототиристоры используют для коммутации световым сигналом мощных электрических сигналов.

Таким образом, несмотря на то, что оптоэлектроника была одним из первых направлений радиоэлектроники, она сохранила важное значение до настоящего времени, в отличии от многих, канувших в лету, технологий.

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм , что соответствует частотам примерно от 0,5·10 12 Гц до 5·10 17 Гц . Иногда говорят о более узком диапазоне частот – от 10 нм до 0,1 мм (~5·10 12 …5·10 16 Гц ). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 10 15 Гц ).

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

Основные достоинства оптоэлектронных приборов:

· высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;

· полная гальваническая развязка источника и приемника излучения;

· отсутствие влияния приемника излучения на источник (однонаправленность потока информации);

· невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).

Излучающий диод (светодиод)

Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.

Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов.

Устройство. Схематическое изображение структуры излучающего диода представлено на рис. 6.1,а, а его условное графическое обозначение – на рис. 6.2,б.

Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n -перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны.

Характеристики и параметры . Для излучающих диодов, работающих в видимом диапазоне (длина волн от 0,38 до 0,78 мкм , частота около 10 15 Гц ), широко используются следующие характеристики:

· зависимость яркости излучения L от тока диода i (яркостная характеристика);

зависимость силы света I v от тока диода i .

Рис. 6.1. Структура светоизлучающего диода (а )

и его графическое изображение (б )

Яркостная характеристика для светоизлучающего диода типа АЛ102А представлена на рис. 6.2. Цвет свечения этого диода – красный.

Рис. 6.2. Яркостная характеристика светодиода

График зависимости силы света от тока для светоизлучающего диода типа АЛ316А представлен на рис. 6.3. Цвет свечения – красный.

Рис. 6.3. Зависимость силы света от тока светодиода

Для излучающих диодов, работающих не в видимом диапазоне, используют характеристики, отражающие зависимость мощности излучения Р от тока диода i . Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А, работающего в инфракрасном диапазоне (длина волны 0,93…0,96 мкм ), представлена на рис. 6.4.

Приведем для диода АЛ119А его некоторые параметры:

· время нарастания импульса излучения – не более 1000 нс ;

· время спада импульса излучения – не более 1500 нс ;

· постоянное прямое напряжение при i =300 мА – не более 3 В ;

· постоянный максимально допустимый прямой ток при t <+85°C – 200 мА ;

· температура окружающей среды –60 …+85°С.

Рис. 6.4 . Зависимость мощности излучения от тока светодиода

Для информации о возможных значениях коэффициента полезного действия отметим, что излучающие диоды типа ЗЛ115А, АЛ115А, работающие в инфракрасном диапазоне (длина волны 0,95 мкм , ширина спектра не более 0,05 мкм ), имеют коэффициент полезного действия не менее 10 %.

Система обозначений. Используемая система обозначений светоизлучающих диодов предполагает применение двух или трех букв и трех цифр, например АЛ316 или АЛ331. Первая буква указывает на материал, вторая (или вторая и третья) – на конструктивное исполнение: Л – единичный светодиод, ЛС – ряд или матрица светодиодов. Последующие цифры (а иногда буквы) обозначают номер разработки.

Фоторезистор

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5,а , а его условное графическое изображение – на рис. 6.5,б .

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка , увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).

Рис. 6.5. Структура (а ) и схематическое обозначение (б ) фоторезистора

Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7

Часто используют следующие параметры фоторезисторов:

· номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм );

· интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:

где i ф – так называемый фототок (разность между током при освещении и током при отсутствии освещения);

Ф – световой поток.

Для фоторезистора ФСК-Г7 S =0,7 А/лм .

Фотодиод

Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а , а его условное графическое изображение – на рис. 6.7,б .

Рис. 6.7. Структура (а) и обозначение (б) фотодиода

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n -перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения u ак между анодом и катодом при разомкнутой цепи. Причем u ак >0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n -перехода).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм ) или различным освещенностям (освещенность измеряется в люксах, лк ).

Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Рис. 6.8. Вольт-амперные характеристики фотодиода

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n– перехода, вызывают генерацию пар электрон-дырка . Под действием электрического поля p-n– перехода носители тока движутся к электродам (дырки – к электроду слоя p , электроны – к электроду слоя n ). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

Рис. 6.9 Рис. 6.10

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 10 7 –10 10 Гц . Фотодиод часто используют в оптопарах светодиод-фотодиод . В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).

Оптрон (оптопара)

Оптрон – полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически и одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 10 7 …10 8 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие – 0,01…1 с .

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей – тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс .

Рассмотрим подробнее оптопару светодиод-фотодиод (рис. 6.11,а ). Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод – в прямом (режим фотогенератора) или обратном направлении (режим фотопреобразователя). Направления токов и напряжений диодов оптопары приведены на рис. 6.11,б .

Рис. 6.11. Схема оптопары (а) и направление токов и напряжений в ней (б)

Изобразим зависимость тока i вых от тока i вх при u вых =0 для оптопары АОД107А (рис. 6.12). Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.

Рис. 6.12. Передаточная характеристика оптопары АОД107А

    Оптоэлектронные приборы

    Основные характеристики светоизлучающих диодов видимого диапазона

    Основные характеристики светоизлучающих диодов инфракрасного диапазона

    Оптоэлектронные приборы в широком понимании

    Список использованных источников

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление изоляции превышает 10 12 – 10 14 Ом);

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы А III B V , среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p -n -переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1, а инфракрасного диапазона – в табл. 2.

Таблица 1 Основные характеристики светоизлучающих диодов видимого диапазона

Тип диода

Яркость, кд/м 2 , или сила света, мккд

Цвет свечения

Постоянный прямой ток, мА

КЛ101 А – В

АЛ102 А – Г

АЛ307 А – Г

10 – 20 кд/м 2

40 – 250 мккд

150 – 1500 мккд

Красный, зеленый

Красный, зеленый

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

Таблица 2. Основные характеристики светоизлучающих диодов инфракрасного диапазона

Тип диода

Полная мощность излучения, мВт

Постоянное прямое напряжение, В

Длина волны излучения, мкм

Время нарастания импульса излучения, нс

Время спада импульса излучения, нс

АЛ106 А – Д

0,6 – 1 (при токе 50 мА)

0,2 – 1,5 (при токе 100 мА)

6 – 10 (при токе 100 мА)

1,5 (при токе 100 мА)

0,2 (при токе 20 мА)

10 (при токе 50 м А)

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металл-полупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p -n -переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p -n -переходе, что позволяет повысить их быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p - i -n -структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.

Наиболее распространенными фотоприемниками с внутренним усилением являются фототранзисторы и фототиристоры. Фототранзисторы чувствительнее фотодиодов, но менее быстродействующие. Для большего повышения чувствительности фотоприемника применяют составной фототранзистор, представляющий сочетание фото- и усилительного транзисторов, однако он обладает невысоким быстродействием.

В оптронах в качестве фотоприемника можно использовать фототиристор (полупроводниковый прибор с тремя p - n -переходами, переключающийся при освещении), который обладает высокими чувствительностью и уровнем выходного сигнала, но недостаточным быстродействием.

Многообразие типов оптронов определяется в основном свойствами и характеристиками фотоприемников. Одно из основных применений оптронов – эффективная гальваническая развязка передатчиков и приемников цифровых и аналоговых сигналов. В этом случае оптрон можно использовать в режиме преобразователя или коммутатора сигналов. Оптрон характеризуется допустимым входным сигналом (током управления), коэффициентом передачи тока, быстродействием (временем переключения) и нагрузочной способностью.

Отношение коэффициента передачи тока к времени переключения называется добротностью оптрона и составляет 10 5 – 10 6 для фотодиодных и фототранзисторных оптронов. Широко используют оптроны на основе фототиристоров. Оптроны на фоторезисторах не получили широкого распространения из-за низкой временной и температурной стабильности. Схемы некоторых оптронов приведены на рис. 4, а – г.

В качестве когерентных источников излучения применяют лазеры, обладающие высокой стабильностью, хорошими энергетическими характеристиками и эффективностью. В оптоэлектронике для конструирования компактных устройств используют полупроводниковые лазеры – лазерные диоды, применяемые, например, в волоконно-оптических линиях связи вместо традиционных линий передачи информации – кабельных и проводных. Они обладают высокой пропускной способностью (полоса пропускания единицы гигагерц), устойчивостью к воздействию электромагнитных помех, малой массой и габаритами, полной электрической изоляцией от входа к выходу, взрыво- и пожаробезопасностью. Особенностью ВОЛС является использование специального волоконно-оптического кабеля, структура которого представлена на рис. 5. Промышленные образцы таких кабелей имеют затухание 1 – 3 дБ/км и ниже. Волоконно-оптические линии связи используют для построения телефонных и вычислительных сетей, систем кабельного телевидения с высоким качеством передаваемого изображения. Эти линии допускают одновременную передачу десятков тысяч телефонных разговоров и нескольких программ телевидения.

В последнее время интенсивно разрабатываются и получают распространение оптические интегральные схемы (ОИС), все элементы которых формируются осаждением на подложку необходимых материалов.

Перспективными в оптоэлектронике являются приборы на основе жидких кристаллов, широко используемые в качестве индикаторов в электронных часах. Жидкие кристаллы представляют собой органическое вещество (жидкость) со свойствами кристалла и находятся в переходном состоянии между кристаллической фазой и жидкостью.

Индикаторы на жидких кристаллах имеют высокую разрешающую способность, сравнительно дешевы, потребляют малую мощность и работают при больших уровнях освещенности.

Жидкие кристаллы со свойствами, схожими с монокристаллами (нематики, наиболее часто используют в световых индикаторах и устройствах оптической памяти. Разработаны и широко применяются жидкие кристаллы, изменяющие цвет при нагревании (холестерики). Другие типы жидких кристаллов (смектики) используют для термооптической записи информации.

Оптоэлектронные приборы, разработанные сравнительно недавно, получили широкое распространение в различных областях науки и техники, благодаря своим уникальным свойствам. Многие из них не имеют аналогов в вакуумной и полупроводниковой технике. Однако существует еще много нерешенных проблем, связанных с разработкой новых материалов, улучшением электрических и эксплуатационных характеристик этих приборов и развитием технологических методов их изготовления.

Оптоэлектронный полупроводниковый прибор - полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.

Оптоэлектронные приборы в широком понимании представляют собой устройства , использующие оптическое излучение для своей работы: генерации, детектирования, преобразования и передачи информационного сигнала. Как правило, эти приборы включают в себя тот или иной набор оптоэлектронных элементов. В свою очередь, сами приборы можно подразделить на типовые и специальные, считая типовыми те из них, которые серийно производятся для широкого применения в различных отраслях промышленности, а специальные устройства выпускаются с учетом специфики конкретной отрасли - в нашем случае, полиграфии.

Все многообразие оптоэлектронных элементов подразделяют на следующие группы изделий: источники и приемники излучения, индикаторы, элементы оптики и световоды, а также оптические среды, позволяющие создавать элементы управления, отображения и запоминания информации. Известно, что любая систематизация не может быть исчерпывающей, но, как верно отметил наш соотечественник, открывший в 1869 г. периодический закон химических элементов, Дмитрий Иванович Менделеев (1834-1907), наука начинается там, где появляется счет, т.е. оценка, сравнение, классификация, выявление закономерностей, определение критериев, общих признаков. Учитывая это, прежде чем приступить к описанию конкретных элементов, следует хотя бы в общих чертах дать отличительную характеристику оптоэлектронных изделий.

Как было сказано выше, главным отличительным признаком оптоэлектроники является связь с информацией. К примеру, если в какой-то установке для закалки стальных валов используется лазерное излучение, то вряд ли закономерно относить эту установку к оптоэлектронным устройствам (хотя сам источник лазерного излучения имеет на это право).

Было также отмечено, что к оптоэлектронным относят обычно твердотельные элементы (в Московском энергетическом институте издано учебное пособие по курсу «Оптоэлектроника» под названием «Приборы и устройства полупроводниковой оптоэлектроники»). Но это правило не очень жесткое, так как в отдельных изданиях по оптоэлектронике подробно рассматривается работа фотоумножителей и электронно-лучевых трубок (они относятся к типу электровакуумных приборов), газовых лазеров и других устройств, которые не являются твердотельными. Однако в полиграфии упомянутые устройства широко используют наравне с твердотельными (в том числе и полупроводниковыми), решая схожие задачи, поэтому в данном случае они имеют полное право на рассмотрение.

Следует упомянуть еще о трех отличительных чертах, которые, по мнению известного специалиста в области оптоэлектроники Юрия Романовича Носова, характеризуют ее как научно-техническое направление.

Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов. В широком смысле оптоэлектронное устройство определяется как прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной (ИК) или ультрафиолетовой (УФ) областях, или прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих же спектральных областях.

Техническую основу оптоэлектроники определяют конструктивно-технологические концепции современной микроэлектроники: миниатюризация элементов; предпочтительное развитие твердотельных плоскостных конструкций; интеграция элементов и функций.

Функциональное назначение оптоэлектроники состоит в решении задач информатики: генерации (формировании) информации путем преобразования различных внешних воздействий в соответствующие электрические и оптические сигналы; переносе информации; переработке (преобразовании) информации по заданному алгоритму; хранении информации, включающем такие процессы, как запись, собственно хранение, неразрушающее считывание, стирание; отображение информации, т.е. преобразование выходных сигналов информационной системы к воспринимаемому человеком виду.

Список использованных источников

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-004.htm

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-003.htm

    http://revolution.allbest.ru/radio/00049966_0.html

    http://revolution.allbest.ru/radio/00049842.html

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ТРАНСПОРТА

Реферат

на тему «Оптоэлектронные приборы.»

Выполнил:

Группы ОБД - 08

Чекардинн

Проверила:

Сидорова А.Э.

Тюмень 2010


  1. Элементы оптоэлектронных устройств

    Реферат >> Коммуникации и связь

    По схеме составного транзистора. Оптоэлектронные приборы Работа оптоэлектронных приборов основана на электронно-фотонных... передачи и хранения информации. Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия...

  2. Применение оптронов и приборов для отображения информации

    Реферат >> Коммуникации и связь

    Определения Оптронами называют такие оптоэлектронные приборы , в которых имеются источник и... 2. В. И. Иванов, А. И. Аксенов, А. М. Юшин «Полупроводниковые оптоэлектронные приборы .» / Справочник.”- М.: Энергоатомиздат, 2002 г. 3. Балуев В.К. «Развитие...

  3. Признаки классификации полупроводниковых приборов

    Реферат >> Физика

    По каким признакам классифицируются полупроводниковые приборы ? Полупроводниковые приборы классифицируют в зависимости от механизма... оптически прозрачное окно. Светодиод Полупроводниковый оптоэлектронный прибор , преобразующий энергию протекающего прямого...

Элементами оптоэлектронных устройств являются фотоэлектронные приборы, рассмотренные выше, а связь между элементами не электрическая, а оптическая. Таким образом, в оптоэлектронныхустройствах практически полностью устранена гальваническая связь между входными и выходными цепями и практически полностью устранена обратная связь между входом и выходом. Комбинируя элементы, входящие в оптоэлектронные устройства, можно получать самые различные их функциональные свойства. На рис. 6.35 представлены конструкции различных оптронов.

Простейшим оптоэлектронным устройством является оптрон.

Оптрон – это устройство, объединяющее в одном корпусе светодиод и приёмник фотоизлучения, например фотодиод (рис. 6.36).

Входной усиливаемый сигнал поступает на светодиод и вызывает его свечение, которое по световому каналу поступает на фотодиод. Фотодиод открывается и в его цепи протекает ток под действием внешнего источника E . Эффективную оптическую связь между элементами оптрона осуществляют с помощью средств волоконной оптики – световодов, выполненных в виде жгута из тонких прозрачных нитей, по которым сигнал передаётся за счёт полного внутреннего отражения с минимальными потерями и с высокой разрешающей способностью. Вместо фотодиода в составе оптрона может быть фототранзистор, фототиристор, фоторезистор.

На рис. 6.37 представлены условные графические обозначения таких приборов.

Диодный оптрон используется в качестве ключа и может коммутировать ток с частотой 10 6 ...10 7 Гц и имеет сопротивление между входной и выходной цепями – 10 13 ...10 15 Ом.

Транзисторные оптроны благодаря большей чувствительности фотоприемника экономичнее диодных. Однако быстродействие их меньше, максимальная частота коммутации обычно не превышает 10 5 Гц. Так же как и диодные, транзисторные оптроны имеют малое сопротивление в открытом состоянии и большое в закрытом и обеспечивают полную гальваническую развязку входных и выходных цепей.

Использование в качестве фотоприемника фототиристора позволяет увеличить импульс выходного тока до 5 А и более. При этом время включения составляет менее 10 -5 с, а входной ток включения не превышает 10 мА. Такие оптроны позволяют управлять сильноточными устройствами различного назначения.

Выводы:

1. Работа оптоэлектронных приборов основана на принципе внутреннего фотоэффекта – генерации пары носителей заряда «электрон – дырка» под действием светового излучения.

2. Фотодиоды обладают линейной световой характеристикой.

3. Фототранзисторы имеют большую интегральную чувствительность, чем фотодиоды, благодаря усилению фототока.

4. Оптроны – оптоэлектронные приборы, в которых обеспечивается электрическая изоляция



входных и выходных цепей.

5. Фотоумножители позволяют резко увеличить фототок за счёт применения вторичной электронной эмиссии.

Контрольные вопросы

1. Что такое внешний и внутренний фотоэффект?

2. Какими параметрами характеризуется фоторезистор?

3. Какие физические факторы влияют на световую характеристику фоторезистора при больших световых потоках?

4. Каковы отличия в свойствах фотодиода и фоторезистора?

5. Как в фотоэлементе происходит непосредственное преобразование световой энергии в электрическую?

6. Каковы отличия в принципе действия и свойствах фотодиода и биполярного фототранзистора?

7. Почему тиристор может управлять относительно большими мощностями, чем допустимая мощность рассеяния самого фототиристора?

8. Что такое оптопара?

ПРИЛОЖЕНИЕ. КЛАССИФИКАЦИЯ И ОБОЗНАЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Для унификации обозначений и стандартизации параметров полупроводниковых приборов используется система условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивнотехнологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов – ГОСТ 10862–64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862–72, а затем на отраслевой стандарт ОСТ 11.336.038–77 и ОСТ 11.336.919–81. При этой модификации основные элементы буквенно-цифрового кода системы условных обозначений сохранились. Данная система обозначений логически выстроена и позволяет дополнять себя по мере дальнейшего развития элементной базы.

Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в ГОСТах:

§ 25529–82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.

§ 19095–73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров.

§ 20003–74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров.

§ 20332–84 – Тиристоры. Термины, определения и буквенные обозначения параметров.



 

Возможно, будет полезно почитать: