Микросхемы малошумящих усилителей. Высокочувствительные микрофоны с малошумящими усилителями нч

Всем привет.

При сборке малошумящих микрофонных усилков высокого качества радиолюбители чаще всего применяют схемные решения на основе дискретных биполярных либо полевых транзисторах, или же малошумящих операционных усилителях. Качественные усилки для микрофонов на транзисторах чаще всего довольно сложные и не дают гарантии на стабильную повторяемость параметров, а чтобы собрать усилитель на малошумящих ОУ может не быть под рукой нужных микросхем либо их цены окажутся больше приемлемых.

Усилитель высокого качества для стереомикрофона возможно изготовить не только на специальных малошумящих транзисторах (рис. 1,2), интегральных операционных усилителях (ОУ) либо специализированных ИМС, но и на том, что у радиолюбителей чаще всего лежит в избытке, но мало кто додумывается о потенциале некоторых «нераспространённых» микросхем. Имеются ввиду интегральные микросхемы - специализированные малошумящие усилители воспроизведения для кассетных, а также катушечных магнитофонов аналоговой записи звука. Бытовая магнитная запись звука быстро уходит в прошлое, уже отработали своё время множество импортных магнитол и автомагнитол, и при разборке их на запчасти микросхемы интегральных усилителей воспроизведения чаще всего остаются ненужными.

На основе одной из таких микросхем LA3161

вы можете изготовить простой стереоусилитель для микрофона с однополярным питанием, который не требует настройки, всего за два часа. Принципиальная схема этого усилка представлена ниже.

Данное устройство представляет собой малошумящий стереофонический усилок, который имеет коэффициент передачи по напряжению примерно 100. Номинальное напряжение для питания этого усилителя 9 Вольт, ток в покое приблизительно 6 мА, номинальное напряжение на входе 5 мВ, а номинальное напряжение на выходе 500 мВ при коэффициенте гармонических искажений 0,05%. Сопротивление на выходе примерно 100 кОм. Микросхема может работать при питании 2,5 - 16 Вольт. Но при питании меньше 7 Вольт её главные характеристики ухудшаются.

Микросхема питается от источника стабильного напряжения проходя через LC - фильтр C1L1C2C3. В частном случае в роли источника питания можно применить гальваническую батарею «Крона» либо её аналог.

Коэффициент передачи усилка зависит от соотношения сопротивления резисторов R5/R3 и R6/R4. Если есть необходимость в большом усилении по напряжению сопротивление резисторов R3 и R4 можете понизить в 10 - 20 раз. В роли микрофонов ВМ1 и ВМ2 можете использовать как динамические, так и конденсаторные микрофоны. Если отсутствует в конденсаторном либо электретном микрофоне истоковый повторитель, его можете ввести в усилитель, к примеру, поставив в каждом канале по микросхеме К513УЕ1. Конденсаторы С4 и С5 не дают проникать на вход различным радиопомехам. Резисторы R9 и R10 устраняют возможное появление «щелчка», когда происходит подключение микрофонного усилителя к аппаратуре звуковоспроизведения, а также нужны для правильной поляризации обкладок оксидных конденсаторов С10 и С11. Функциональная схема микросхемы LA3161 представлена на рисунке ниже. Если использовать только один из двух усилителей микросхемы соответствующий неинвертирующий вход (вывод 1 либо 8) нужно соединять с общим проводом.

Усилок можете собрать на плате размерами 70?27 мм (смотрите фото). В левой части платы нужно оставить свободное место, чтобы можно было установить дополнительные элементы, которые возможно потребуются, для того чтобы согласовать некоторые динамические микрофоны с входом усилителя.

Резисторы можете применить типа МЛТ, С2-23 либо их аналоги. При этом лучше учесть, то что чем выше мощность резисторов одного и того же типа, тем ниже будет их уровень собственных шумов. Если коэффициент усиления больше 500 резисторы R1 - R6 лучше поставить с мощностью 0,5 - 1 Ватт. Неполярные конденсаторы - импортные малогабаритные плёночные либо керамические. Оксидные конденсаторы С6, С7 должны иметь наименьший ток утечки. В случае если среди обыкновенных алюминиевых не удаётся найти высококачественные конденсаторы, то можете применить керамические либо плёночные конденсаторы с ёмкостью 4,7 мкФ. Дроссель L1 может быть любой малогабаритный маломощный с индуктивностью больше 100 мкГн. Если напряжение питания 12 Вольт и больше, то последовательно с ним лучше будет подключить резистор сопротивлением 1 кОм. Микросхему LA3161 можете поменять на LA3160.

Эти две микросхемы выпускает фирма Sanyo в корпусе SIP-8, у них одинаковые цоколевки выводов и похожие параметры.Микросхемы малошумящих усилков воспроизведения магнитной звукозаписи с отключенными цепями коррекции можете применять не только в роли микрофонных усилителей, но и также в узлах предварительных нормирующих усилителей, пассивных регуляторов тембра, громкости или в качестве усилителей сигналов с пьезодатчиков и пиродетекторов.

Всего вам доброго.

Существует немало усилителей, для которых одним из основных необходимых параметров является требование обеспечить минимальный шум на выходе. Обычно такие схемы используются для усиления сигналов от различных датчиков, а также в приемниках прямого преобразования, где основное усиление осуществляется на низких частотах. Увеличение шумов приводит к невозможности различать слабые сигналы на фоне шума.

Внутренние шумы усилителя возникают при прохождении тока через пассивные и активные элементы схемы.
От построения схемы (схемотехники) также в немалой степени зависят шумовые характеристики. При разработке усилителя, имеющего большое отношение сигнал/шум, кроме оптимального выбора вида схемы, важно правильно подобрать элементную базу и оптимизировать режим работы каскадов.

Выбор компонентов схемы

В реальном усилителе источником внутренних шумов являются:
1) тепловые и токовые шумы резисторов;
2) фликкер-шумы конденсаторов, диодов и стабилитронов;
3) флуктуационные шумы активных элементов (транзисторов);
4) вибрационные и контактные шумы.

Резисторы

Собственные шумы резисторов складываются из тепловых и токовых шумов.

Тепловые шумы вызваны движением электронов в токопро-водящем веществе, из которого изготовлен резистор (этот шум увеличивается с увеличением температуры). Если на резистор не действует напряжение, то ЭДС шумов на нем (в мкВ) определяется из соотношения:

Eш=0,0125 x f x R,
где f -полоса частот в кГц; R -сопротивление в кОм.

Токовые шумы возникают при протекании через резистор тока. В этом случае шумовое напряжение появляется из-за эффекта флуктуации контактных сопротивлений между проводящими частицами материала. Его величина линейно зависит от приложенного напряжения. Поэтому шумовые свойства резисторов характеризуются уровнем шума, представляющим собой отношение действующего значения переменной составляющей напряжения шумов Em (мкВ) к приложенному напряжению U (В): Em/U.

Частотный спектр обоих видов шумов непрерывный ("белый шум"). И если у теплового шума он равномерно распределен до очень высоких частот, то у токового шума начинает спадать уже примерно с 10 МГц.

Общая величина шума пропорциональна квадратному корню сопротивления, поэтому для его уменьшения величину сопротивлений в схеме надо также уменьшать.
Иногда с целью снижения шумов, вызванных резисторами, прибегают к их параллельному (или последовательному) включению, а также устанавливают большей мощности, чем это требуется для работы. Кроме того, можно применять из них те типы, в которых за счет технологии изготовления этот параметр меньше.

У непроволочных резисторов токовые шумы значительно больше тепловых. Общий уровень шума для разных типов резисторов может находиться в диапазоне от 0,1 до 100 мкВ/В.

Для сравнения различных резисторов (постоянных и подстроечных из группы СП) максимальные значения шумов приведены в таблице 1

Тип резисторов Технологическое исполнение Уровень шума, мкВ/В БЛТ буроуглеродистые 0,5 С2-13 С2-29В металлодиэлектрические 1,0 С2-50 металлодиэлектрические 1,5 МЛТ ОМЛТ С2-23С2-33 металлодиэлектрические 1...5 С2-26 металлооксидные 0,5 СП3-4
СП3-19
СП3-23 пленочные компазиционные 47...100
25...47
25...47
Таблица 1 - Шумовые свойства резисторов

Как видно из таблицы, подстроенные резисторы значительно больше шумят. По этой причине их лучше применять с небольшими номиналами или же вообще исключить из схемы.
Шумовые свойства резисторов можно использовать для выполнения широкополосного генератора шума.

В качестве рекомендаций по выбору резисторов для сборки малошумящего усилителя можно отметить, что наиболее удобно использовать типы: С2-26, С2-29В, С2-33 и С1-4 (бескорпусное чип-исполнение). В последнее время в продаже появились малошумящие импортные металлодиэлектрические резисторы, по конструкции аналогичные С2-23, но с более низким коэффициентом шума (0,2 мкВ/В).

Существенно снизить шумы у резисторов можно путем их сильного охлаждения, но такой способ слишком дорогой и применяется очень редко.

Конденсаторы

В конденсаторах источником фликкершумов является ток утечки. Наибольшие токи утечки имеют оксидные конденсаторы большой емкости. Причем утечка увеличивается с увеличением емкости и снижается с увеличением допустимого номинального рабочего напряжения.

Справочные данные по наиболее распространенным оксидным конденсаторам приведены в таблице 29.
Наименьшие токи утечки среди полярных конденсаторов имеют: К53-1А, К53-18, К53-16, К52-18, К53-4 и другие.
Оксидные конденсаторы, установленные на входе в качестве разделительных, способны существенно увеличить шумы усилителя. Поэтому желательно избегать их применения, заменяя на пленочные (К10-17, К73-9, К73-17, КМ-6 и др.), хотя это и приведет к существенному увеличению размеров конструкции.

Тип конденсатора Технология изготовления Рабочая температура, С Ток утечки, мкА К50-6
К50-16
К50-24
алюминиевые оксидно-электролитические -10...+85
-20...+70
-25...+70 4...5000
4...5000
18...3200 К52-1
К52-2
К52-18 танталовые оксидные объемно-пористые -60...+85
-50...+155
-60...+155 1,2...8,5
2...30
1...30 К53-1
К53-1А
К53-18 танталовые оксидно-полупроводниковые -80...+85
-60...+125
-60...+125 2...5
1...8
1...63
Таблица 2 - Справочные параметры конденсаторов

Диоды и стабилитроны

При прямом прохождении тока шумы у диодов минимальны. Наибольший шум обеспечивает ток утечки (при действии обратного напряжения), и чем он будет меньше, тем лучше. Довольно большие шумы у стабилитронов. Это свойство даже иногда используют для выполнения простейших генераторов шума для детских игрушек (имитаторы шума прибоя, звуков костра и др. -Л16, Л17). Для получения максимального шума в таких схемах стабилитроны работают на малых токах (с большим добавочным резистором).

Трнзисторы

В самом транзисторе основными видами шумов являются тепловой и генерационно-рекомбинационный, спектральная плотность мощности которых не зависит от частоты.

Чтобы снизить уровень шума, для работы во входных каскадах у нас в стране обычно применяют малошумящие биполярные транзисторы с нормируемым коэффициентом шума (Кш). Такими являются: (п-р-п) КТ3102Д(Е), КТ342В и (p-n-р) КТ3107Е(Ж, Л) и ряд др. Тут следует отметить, что применение малошумящих высокочастотных биполярных транзисторов в диапазоне низких частот, как правило, бывает нецелесообразно. У таких транзисторов нормируется коэффициент шума только в области высоких частот, а в диапазоне ниже 100 кГц они могут шуметь не меньше любых других. Кроме того, у таких транзисторов возможно проявление склонности к возбуждению (автогенерации).

При необходимости получить большое входное сопротивление во входном каскаде усилителя нередко применяют полевой транзистор КП303В(А). Он изготовлен с затвором на основе р-n перехода (каналом n-типа) и имеет нормируемый коэффициент шума.

Контактные шумы

возникают при некачественной пайке (с нарушением температурного режима) или в местах соединения разъемов. По этой причине не рекомендуется выполнять подключение входных цепей малошумящего усилителя через разъемные соединения. Я также встречался с ситуацией, когда транзисторы после повторной пайки больше шумели в той же самой схеме.

Вибрационные шумы

могут проявляться при эксплуатации устройства на подвижных объектах или в местах с повышенной вибрацией от работающего оборудования. Они возникают из-за передачи механических колебаний на обкладки конденсаторов, между которыми имеется разность потенциалов (так называемый "пьезо-микрофонный эффект"). Это наблюдается даже в малогабаритных керамических конденсаторах (К10, К15 и др.) повышенной емкости (более 0,01 мкФ). Особенно сильно такая помеха может проявляться в разделительных конденсаторах, установленных на входе усилителя. Сигнал помехи при механических вибрациях имеет форму коротких остроконечных импульсов, спектр которых находится в диапазоне низких частот. Для борьбы с такого вида помехами можно применять амортизацию всей конструкции. В оксидных конденсаторах эти помехи не возникают.

При выборе деталей для сборки малошумящей схемы необходимо принимать во внимание их срок изготовления. Производитель гарантирует параметры только в течение определенного срока хранения. Это обычно не более 8... 15 лет. Со временем происходят процессы старения, проявляющиеся в снижении сопротивления изоляции, у конденсаторов уменьшается емкость и возрастают токи утечки. Особенно сильно меняют свои характеристики со временем оксидные конденсаторы. По этой причине лучше, по возможности, избегать их применения в цепях прохождения сигнала.

Moshe Gerstenhaber, Rayal Johnson и Scott Hunt, Analog Devices

Analog Dialogue

Введение

Создание измерительной системы с чувствительностью в единицы нановольт является очень сложной инженерной задачей. Лучшие из доступных операционных усилителей (ОУ), такие как ультра малошумящий , на частоте 1 кГц позволяют получить напряжение шумов менее 1 нВ/√Гц, однако в полосе частот от 0.1 Гц до 10 Гц природа низкочастотных шумов ограничивает наилучшие достижимые значения уровнем 50 нВ пик-пик. Передискретизация и усреднение выборок могут уменьшить среднеквадратичный вклад от шумов с равномерным спектром за счет более высокой скорости передачи данных и дополнительного потребления мощности, но передискретизация не уменьшит спектральную плотность шума и не окажет никакого влияния на фликкер-шум (1/f). Кроме того, большой коэффициент усиления входной цепи предварительной обработки сигнала, необходимый для исключения шумового вклада последующих каскадов, уменьшает полосу пропускания системы. При отсутствии изоляции любые помехи на шине земли проявятся на выходе, где они могут подавить как слабые внутренние шумы усилителя, так и его входной сигнал. Хороший малошумящий инструментальный усилитель упрощает разработку и конструирование таких систем и уменьшает остаточные ошибки, обусловленные синфазным напряжением, флуктуациями питания и температурным дрейфом.

Малошумящий инструментальный усилитель обеспечивает прецизионное усиление с коэффициентом 2000 и имеет все, что необходимо для решения перечисленных проблем. При температурном дрейфе усиления не более 5 ppm/°C, максимальном дрейфе напряжении смещения 0.3 мкВ/°C, минимальном коэффициенте подавления синфазного напряжения 140 дБ на частоте 60 Гц (не более 120 дБ на частоте 50 кГц), коэффициенте подавления пульсаций питания 130 дБ и полосе пропускания 3.5 МГц AD8428 идеально подходит для измерительных систем нижнего уровня. Но самое важное, что равное всего 1.3 нВ/√Гц значение спектральной плотности напряжения собственных шумов усилителя на частоте 1 кГц и лучшие в отрасли шумы 40 нВ пик-пик в полосе частот от 0.1 … 10 Гц, позволяют получить большое отношение сигнал/шум для очень слабых сигналов. Два дополнительных вывода (+FIL, -FIL) дают разработчикам возможность, изменив коэффициент усиления или добавив фильтр, сузить шумовую полосу частот. Кроме того, эти выводы фильтров являются уникальным средством улучшения отношения сигнал/шум.

Использование инструментального усилителя AD8428 для снижения шумов

На Рисунке 1 приведена схемная конфигурация, позволяющая еще больше снизить уровень шумов. Параллельное соединение входов усилителей и выводов фильтров четырех микросхем AD8428 уменьшает шумы в два раза.

Выходной импеданс схемы будет низким независимо от того, с какого инструментального усилителя взят сигнал. Эту схему можно расширить, чтобы уменьшить шум в корень квадратный раз из числа усилителей.

Как схема снижает шумы

Типичное значение 1.3 нВ/√Гц приведенного к входу напряжения шумов, генерируемого каждым усилителем AD8428, не коррелированно с шумами, производимыми остальными усилителями. Шумы некоррелированных источников складываются на выводах фильтров как корень из суммы квадратов. В то же время входной сигнал имеет положительную корреляцию. Напряжения, возникающие на выводах фильтров каждой микросхемы вследствие прохождения входного сигнала, одинаковы, поэтому параллельное соединение нескольких AD8428 не меняет напряжения в этих точках, и коэффициент усиления остается равным 2000.

Анализ шумов

Следующий анализ упрощенной схемы на Рисунке 2 показывает, что соединенные таким образом два усилителя AD8428 уменьшают шум в √2 раз. Шум каждого усилителя может быть смоделирован напряжением на его входе +IN. Для определения общего шума следует заземлить входы и использовать метод суперпозиции для объединения источников шумов.

Шум источника e n1 приходит на выход предусилителя микросхемы A1 дифференциально усиленным в 200 раз. Для этой части анализа выходы предусилителя микросхемы A2 считаем не содержащими шумов, а его входы заземленными. Резистивный делитель 6 кОм/6 кОм между каждым выходом предусилителя микросхемы A1 и соответствующим выходом предусилителя микросхемы A2 может быть заменен его эквивалентом Тевенина: половиной шумового напряжения предусилителя A1 с последовательным сопротивлением 3 кОм. Это деление и является тем механизмом, который уменьшает шумы. Полный анализ методом узловых потенциалов показывает, что шум e n1 усиливается на выходе до уровня 1000 × e n1 . Исходя из симметрии схемы, естественно заключить, что вклад от e n2 будет равен 1000 × e n2 . Одинаковые и равные en уровни e n1 и e n2 добавляются как корень из суммы квадратов, в результате чего общий выходной шум равен 1414 × e n .

Для того чтобы привести его обратно к входу, необходимо определить величину коэффициента усиления. Предположим, что между выводами +ВХОД и -ВХОД приложен дифференциальный сигнал V IN . Дифференциальное напряжение на выходе первого каскада A1 будет равно V IN × 200. Такие же напряжения возникают и на выходах предварительного усилителя микросхемы A2, поэтому делитель 6 кОм/6 кОм никак не влияет на сигнал, и анализ методом узловых потенциалов показывает, что выходное напряжение равно V IN × 2000. Таким образом, общее напряжение приведенного к входу шума равно e n × 1414/2000, или, что тоже, e n /√2. Подставив сюда типовое для AD8428 значение плотности шума 1.3 нВ/√Гц, получим, что конфигурация из двух усилителей дает плотность шума порядка 0.92 нВ/√Гц.

При добавлении усилителей меняется импеданс вывода фильтра, что также уменьшает уровень шума. Например, при использовании четырех AD8428 в конфигурации, показанной на Рисунке 1, между выведенным на контакт фильтра резистором 6 кОм и каждым из нешумящих выходов предусилителей оказываются подключенными три резистора по 6 кОм. Это фактически образует резистивный делитель 6 кОм/2 кОм, ослабляющий напряжение шума в четыре раза. Тогда общий шум четырех усилителей, как и предсказывалось, становится равным e n /2.

Компромисс между шумами и мощностью

С точки зрения критерия шум/мощность AD8428 отличается очень высокой эффективностью. При плотности входного шума 1.3 нВ/√Гц его ток потребления не превышает 6.8 мА. Для сравнения: малошумящему операционному усилителю AD797 для достижения уровня 0.9 нВ/√Гц потребуется максимальный ток 10.5 мА. Построенному на двух ОУ AD797 и одном маломощном дифференциальном усилителе дискретному инструментальному усилителю с коэффициентом усиления 2000 для получения приведенного к входу напряжения шумов 1.45 нВ/√Гц может потребоваться более 21 мА, которые будут потребляться в основном двумя ОУ и резистором 30.15 Ом.Помимо суммарного тока, потребляемого группой параллельно включенных усилителей, разработчик должен также учитывать их тепловые режимы. Мощность, рассеиваемая внутри одного корпуса AD8428 при питании напряжениями ±5 В, повышает его температуру примерно на 8 °C. Если несколько устройств расположены на плате компактной группой или находятся в замкнутом пространстве корпуса, они могут нагревать друг друга, что потребует при расчете схемы принимать во внимание и тепловые аспекты.

SPICE моделирование

SPICE моделирование, хотя и не должно заменять макетирование, может быть полезным в качестве первого шага для проверки идеи как таковой. Для проверки и имитации работы схемы, состоящей из двух включенных параллельно устройств, использовался симулятор ADIsimPE со SPICE макромоделью AD8428. Показанные на Рисунке 3 результаты демонстрируют ожидаемое поведение схемы: коэффициент усиления 2000 и сниженный на 30% шум.

Результаты измерений

Полная схема с четырьмя микросхемами AD8428 была проверена в лабораторных условиях. Измеренный приведенный к входу шум имел спектральную плотность 0.7 нВ/√Гц на частоте 1 кГц и уровень 25 нВ пик-пик в диапазоне от 0.1 Гц до 10 Гц. Это меньше шумов многих нановольтметров. Результаты измерений спектральной плотности и пикового напряжения шума представлены на Рисунках 4 и 5, соответственно.

Заключение

Создание устройств с чувствительностью нановольтового уровня является очень сложной задачей, создающей множество проблем при проектировании. Инструментальный усилитель AD8428 обладает всеми характеристиками, необходимыми для реализации высококачественных систем, требующих низких шумов и большого усиления. Более того, его уникальная структура позволяет разработчикам добавить эту необычную схему в свой арсенал нановольтовых технических решений.

Ссылки

  1. MT-047 Tutorial. Op Amp Noise.
  2. MT-048 Tutorial. Op Amp Noise Relationships: 1/f Noise, RMS Noise, and Equivalent Noise Bandwidth.
  3. MT-049 Tutorial. Op Amp Total Output Noise Calculations for Single-Pole System.
  4. MT-050 Tutorial. Op Amp Total Output Noise Calculations for Second-Order System.
  5. MT-065 Tutorial. In-Amp Noise.

Рассмотрены схемы и конструкции высокочувствительных микрофонов в комплексе с самодельными малошумящими усилителями низкой частоты (УНЧ).

Конструирование чувствительного и малошумящего усилителя (УНЧ) имеет свои особенности. Наибольшее влияние на качество воспроизведения звуков и разборчивость речи оказывают амплитудно-частотная характеристика (АЧХ) усилителя, уровень его шумов, параметры микрофона (АЧХ, диаграмма направленности, чувствительность и т.д.) или заменяющих его датчиков, а также их взаимная согласованность с усилителем. Усилитель должен иметь достаточное усиление.

При использовании микрофона - это 60дб-80дб, т.е. 1000-10000 раз. Учитывая особенности приема полезного сигнала и его низкую величину в условиях сравнительно значительного уровня помех, которые существуют всегда, целесообразно в конструкции усилителя предусмотреть возможность коррекции АХЧ, те. частотной селекции обрабатываемого сигнала.

При этом необходимо учитывать, что наиболее информативный участок звукового диапазона сосредоточен в полосе от 300 Гц до 3-3.5 кГц. Правда, иногда с целью уменьшения помех эту полосу сокращают еще больше. Использование полосового фильтра в составе усилителя позволяет значительно увеличить дальность прослушивания (в 2 и более раз).

Еще большей дальности можно достичь использованием в составе УНЧ селективных фильтров с высокой добротностью, позволяющих выделять или подавлять сигнал на определенных частотах. Это дает возможность значительно повысить соотношение сигнал/шум.

Элементарная база

Современная элементная база позволяет создавать качественные УНЧ на основе малошумящих операционных усилителей (ОУ), например, К548УН1, К548УН2, К548УНЗ, КР140УД12, КР140УД20 и т.д.

Однако, несмотря широкую номенклатуру специализированных микросхем и ОУ, и их высокие параметры, УНЧ на транзисторах в настоящее время не потеряли своего значения. Использование современных, малошумящих транзисторов, особенно в первом каскаде, позволяет создать оптимальные по параметрам и сложности усилители: малошумящие, компактные, экономичные, рассчитанные на низковольтное питание. Поэтому транзисторные УНЧ часто оказываются хорошей альтернативой усилителям на интегральных микросхемах.

Для минимизации уровня шумов в усилителях, особенно в первых каскадах, целесообразно использовать высококачественные элементы. К таким элементам относятся малошумящие биполярные транзисторы с высоким коэффициентом усиления, например, КТ3102, КТ3107. Однако в зависимости от назначения УНЧ используются и полевые транзисторы.

Большое значение играют и параметры остальных элементов. В малошумящих каскадах электронных схем используют оксидные конденсаторы К53-1, К53-14, К50-35 и т. п., неполярные - КМ6, МБМ и т. п., резисторы - не хуже традиционных 5% МЛТ-0.25 и МЛ Т-0.125, лучший вариант резисторов - проволочные, безиндуктивные резисторы.

Входное сопротивление УНЧ должно соответствовать сопротивлению источника сигнала - микрофона или заменяющего его датчика. Обычно входное сопротивление УНЧ стараются сделать равным (или немного больше) сопротивлению источника-преобразователя сигнала на основных частотах.

Для минимизации электрических помех целесообразно для подключения микрофона к УНЧ использовать экранированные провода минимальной длины. Электретный микрофон МЭК-3 рекомендуется монтировать непосредственно на плате первого каскада микрофонного усилителя.

При необходимости значительного удаления микрофона от УНЧ следует использовать усилитель с дифференциальным входом, а подключение осуществлять витой парой проводов в экране. Экран подключается к схеме в одной точке общего провода максимально близко к первому ОУ. Это обеспечивает минимизацию уровня наведенных в проводах электрических помех.

Малошумящий УНЧ для микрофона на К548УН1А

На рисунке 1 представлен пример УНЧ на основе специализированной микросхемы - ИС К548УН1А, содержащей 2 малошумящих ОУ. ОУ и УНЧ, созданный на базе этих ОУ (ИС К548УН1А), рассчитаны на однополярное напряжение питания 9В - ЗОВ. В приведенной схеме УНЧ первый ОУ включен в варианте, который обеспечивает минимальный уровень шумов ОУ.

Рис. 1. Схема УНЧ на ОУ К548УН1А и варианты подключения микрофонов: а - УНЧ на ОУ К548УН1А, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 1:

  • R1 =240-510, R2=2.4к, R3=24к-51к (подстройка усиления),
  • R4=3к-10к, R5=1к-3к, R6=240к, R7=20к-100к (подстройка усиления), R8=10; R9=820-1.6к (для 9В);
  • С1 =0.2-0.47, С2=10мкФ-50мкФ, С3=0.1, С4=4.7мкФ-50мкФ,
  • С5=4.7мкФ-50мкФ, С6=10мкФ-50мкФ, С7=10мкФ-50мкФ, С8=0.1-0.47, С9=100мкФ-500мкФ;
  • ОУ 1 и 2 - ОУ ИС К548УН1А (Б), два ОУ в одном корпусе ИС;
  • Т1, Т2 - КТ315, КТ361 или КТ3102, КТ3107 или аналогичные;
  • Т - ТМ-2А.

Выходные транзисторы данной схемы УНЧ работают без начального смещения (с Iпокоя=0). Искажения типа “ступенька" практически отсутствуют благодаря глубокой отрицательной обратной связи, охватывающей второй ОУ микросхемы и выходные транзисторы. При необходимости изменения режима выходных транзисторов (Iпокоя=0) схему необходимо соответствующим образом откорректировать: включить в схему резистор или диоды между базами Т1 и Т2, два резистора по 3-5к с баз транзисторов на общий провод и провод питания.

Кстати, в УНЧ в двухтактных выходных каскадах без начального смещения хорошо работают уже устаревшие германиевые транзисторы. Это позволяет использовать с такой структурой выходного каскада ОУ с относительно низкой скоростью нарастания выходного напряжения без опасности возникновения искажений, связанных с нулевым током покоя. Для исключения опасности возбуждения усилителя на высоких частотах используется конденсатор СЗ, подключенный рядом с ОУ, и цепочка R8С8 на выходе УНЧ (достаточно часто RC на выходе усилителя можно исключить).

Малошумящий микрофонный УНЧ на транзисторах

На рисунке 2 представлен пример схемы УНЧ на транзисторах . В первых каскадах транзисторы работают в режиме микротоков, что обеспечивает минимизацию внутренних шумов УНЧ. Здесь целесообразно использовать транзисторы с большим коэффициентом усиления, но малым обратным током.

Это могут быть, например, 159НТ1В (Iк0=20нА) или КТ3102 (Iк0=50нА), или аналогичные.

Рис. 2. Схема УНЧ на транзисторах и варианты подключения микрофонов: а УНЧ на транзисторах, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 2:

  • R3=5.6к-6.8к (регулятор громкости), R4=3к, R5=750,
  • R6=150к, R7=150к, R8=33к; R9=820-1.2к, R10=200-330,
  • R11=100к (подстройка, Uэт5=Uэт6=1.5В),
  • R12=1 к (подстройка тока покоя Т5 и Т6, 1-2 мА);
  • С1=10мкФ-50мкФ, С2=0.15мкФ-1мкФ, С3=1800,
  • С4=10мкФ-20мкФ, С5=1мкФ, С6=10мкФ-50мкФ, С7=100мкФ-500мкФ;
  • Т1, Т2, Т3 -159НТ1 В, КТ3102Е или аналогичные,
  • Т4, Т5 - КТ315 или аналогичные, но можно и МП38А,
  • Т6 - КТ361 или аналогичные, но можно и МП42Б;
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

Использование подобных транзисторов позволяет обеспечить не только устойчивую работу транзисторов при малых коллекторных токах, но и достичь хороших усилительных характеристик при низком уровне шумов.

Выходные транзисторы могут использоваться как кремниевые (КТ315 и КТ361, КТ3102 и КТ3107, и т.п.), так и германиевые (МП38А и МП42Б и т.п.). Настройка схемы сводится к установке резистором R2 и резистором RЗ соответствующих напряжений на транзисторах: 1,5В - на коллекторе Т2 и 1,5В - на эмиттерах Т5 и Т6.

Микрофонный усилитель на ОУ с дифференциальным входом

На рисунке 3 представлен пример УНЧ на ОУ с дифференциальным входом . Правильно собранный и настроенный УНЧ обеспечивает значительное подавление синфазной помехи (60 дб и более). Это обеспечивает выделение полезного сигнала при значительном уровне синфазных помех.

Следует напомнить, что синфазная помеха - помеха, поступающая в равных фазах на оба входа ОУ УНЧ, например, помеха, наведенная на оба сигнальных провода от микрофона. Для обеспечения корректной работы дифференциального каскада необходимо точно выполнить условие: R1 =R2, R3=R4.

Рис.3. Схема УНЧ на ОУ с дифференциальным входом и варианты подключения микрофонов: а - УНЧ с дифференциальным входом, б - подключение динамического микрофона, в - подключение электретного микрофона, г - подключение удаленного микрофона.

Элементы для схемы на рисунке 3:

  • R7=47к-300к (подстройка усиления, К=1+R7/R6), R8=10, R9=1,2к-2.4к;
  • C1=0.1-0.22, C2=0.1-0.22, СЗ=4.7мкФ-20мкФ, C4=0.1;
  • ОУ - КР1407УД2, КР140УД20, КР1401УД2Б, К140УД8 или другие ОУ в типовом включении, желательно с внутренней коррекцией;
  • D1 - стабилитрон, например, КС133, можно использовать светодиод в обычном включении, например, АЛ307;
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

Резисторы целесообразно подобрать с помощью омметра среди 1%-резисторов с хорошей температурной стабильностью. Для обеспечения необходимого баланса рекомендуется один из четырех резисторов (например, R2 или R4) выполнить переменным. Это может быть высокоточный переменный резистор-подстроечник с внутренним редуктором.

Для минимизации шумов входное сопротивление УНЧ (значения резисторов R1 и R2) должно соответствовать сопротивлению микрофона или заменяющего его датчика. Выходные транзисторы УНЧ работают без начального смещения (с 1покоя=0). Искажения типа "ступенька” практически отсутствуют благодаря глубокой отрицательной обратной связи, охватывающей второй ОУ и выходные транзисторы. При необходимости схему включения транзисторов можно изменить.

Настройка дифференциального каскада: подать синусоидальный сигнал 50 Гц на оба входа дифференциального канала одновременно, подбором величины RЗ или R4 обеспечить на выходе ОУ 1 нулевой уровень сигнала 50 Гц. Для настройки используется сигнал 50 Гц, т.к. электросеть частотой 50 Гц дает максимальный вклад в суммарную величину напряжения помехи. Хорошие резисторы и тщательная настройка позволяют достичь подавления синфазной помехи 60дб-80дб и более.

Для повышения устойчивости работы УНЧ целесообразно зашунтировать выводы питания ОУ конденсаторами и на выходе усилителя включить RC-целочку (как в схеме усилителя на рисунке 1). Для этой цели можно использовать конденсаторы КМ6.

Для подключения микрофона использована витая пара проводов в экране. Экран подключается к УНЧ (только в одной точке!!) максимально близко от входа ОУ.

Улучшеные усилители для чувствительных микрофонов

Применение в выходных каскадах УНЧ низкоскоростных ОУ и эксплуатация кремниевых транзисторов в усилителях мощности в режиме без начального смещения (ток покоя равен нулю - режим В) может, как это уже отмечалось выше, привести к переходным искажениям типа “ступенька”. В этом случае для исключения данных искажений целесообразно изменить структуру выходного каскада таким образом, чтобы выходные транзисторы работали с небольшим начальным током (режим АВ).

На рисунке 4 представлен пример подобной модернизации приведенной схемы усилителя с дифференциальным входом (рисунок 3).

Рис.4. Схема УНЧ на ОУ с дифференциальным входом и с низким уровнем искажений выходного каскада.

Элементы для схемы на рисунка 4:

  • R1=R2=20к (равно или немного выше максимального сопротивления источника в рабочем диапазоне частот),
  • RЗ=R4=1м-2м; R5=2к-10к, R6=1к-Зк,
  • R7=47к-300к (подстройка усиления, К=1+R7/R6),
  • R8=10, R10=10к-20к,R11=10к-20к;
  • С1 =0.1-0.22, С2=0.1-0.22, СЗ=4.7мкФ-20мкФ, C4=0.1;
  • ОУ - К140УД8, КР1407УД2, КР140УД12, КР140УД20, КР1401УД2Б или другие ОУ в типовом включении и желательно с внутренней коррекцией;
  • Т1, Т2 - КТ3102, КТ3107 или КТ315, КТ361, или аналогичные;
  • D2, D3 - КД523 или аналогичные;
  • М - МД64, МД200, МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

На рисунке 5 представлен пример УНЧ на транзисторах . В первых каскадах транзисторы работают в режиме микротоков, что обеспечивает минимизацию шумов УНЧ. Схема во многом аналогична схеме на рисунке 2. Для увеличения доли полезного сигнала низкого уровня на фоне неизбежных помех в схему УНЧ включен полосовой фильтр, обеспечивающий выделение частот в полосе 300 Гц -3.5 кГц.

Рис.5. Схема УНЧ на транзисторах с полосовым фильтром и варианты подключения микрофонов: а - УНЧ с полосовым фильтром, б - подключение динамического микрофона, в - подключение электретного микрофона.

Элементы для схемы на рисунке 5:

  • R1=43к-51к, R2=510к (подстройка, Uкт2=1.2В-1,8В),
  • R3=5.6к-6.8к (регулятор громкости), R4=3к, R5=8.2к,
  • R6=8.2к, R7=180, R8=750; R9=150к, R10=150к, R11=33к,
  • R12=620, R13=820-1,2к, R14=200-330,
  • R15=100к (подстройка, Uэт5=Uэт6=1.5В), R16=1 к (подстройка тока покоя Т5 и Т6, 1-2мА);
  • С1=10мкФ-50мкФ, С2=0.15-0.33, С3=1800,
  • С4=10мкФ-20мкФ, С5=0.022, С6=0.022,
  • С7=0.022, С8=1мкФ, С9=10мкФ-20мкФ, С10=100мкФ-500мкФ;
  • Т1, Т2, Т3 -159НТ1 В, КТ3102Е или аналогичные;
  • Т4, Т5 - КТ3102, КТ315 или аналогичные, но можно и устаревшие, германиевые транзисторы, например, МП38А,
  • Т6 - КТ3107 (если Т5 - КТ3102), КТ361 (если Т5 - КТ315) или аналогичные, но можно и устаревшие, германиевые транзисторы, например, МП42Б (если Т5 - МП38А);
  • М - МД64, МД200 (б), МЭК-3 или аналогичный (в),
  • Т - ТМ-2А.

В данной схеме также целесообразно использовать транзисторы с большим коэффициентом усиления, но малым обратным током коллектора (Iк0), например, 159НТ1В (Iк0=20нА) или КТ3102 (Iк0=50нА), или аналогичные. Выходные транзисторы могут использоваться как кремниевые (КТ315 и КТ361, КТ3102 и КТ3107, и т.п.), так и германиевые (устаревшие транзисторы МП38А и МП42Б и т.п.).

Настройка схемы, как и в случае схемы УНЧ на рис.11.2, сводится к установке резистором R2 и резистором RЗ соответствующих напряжений на транзисторах Т2 и Т5, Т6: 1,5В - на коллекторе Т2 и 1,5В - на эмиттерах Т5 и Т6.

Конструкция микрофона

Из большого листа плотной бумаги с ворсом, под бархат, изготавливается труба диаметром 10-15 см и длиной 1.5-2 м. Ворс, как можно догадаться, конечно, должен быть не снаружи, а внутри. В один конец этой трубы вставляется чувствительный микрофон. Лучше если это будет хороший динамический или конденсаторный микрофон.

Однако можно воспользоваться и обычным, бытовым, микрофоном. Это может быть, например, динамический микрофон типа МД64, МД200 или даже миниатюрный МКЭ-3.

Правда, с бытовым микрофоном результат будет несколько хуже. Конечно, микрофон необходимо подключить с помощью экранированного кабеля к чувствительному усилителю с малым уровнем собственных шумов (рис.1 и 2). Если длина кабеля превышает 0.5 м, то лучше воспользоваться микрофонным усилителем, имеющим дифференциальный вход, например, УНЧ на ОУ (рис.

Это позволит уменьшить синфазную составляющую помех - различного рода наводки от ближайших электромагнитных устройств, фон 50 Гц от сети 220 В и т. д. Теперь о втором конце данной бумажной трубы. Если этот свободный конец трубы направить на источник звука, например, на группу разговаривающих людей, то можно услышать речь. Казалось бы ничего особенного.

Именно для этого и существуют микрофоны. И труба для этого совершенно не нужна. Однако удивительно то, что расстояние до разговаривающих может быть значительным, например, 100 и более метров. И усилитель, и микрофон, снабженный такой трубой, позволяют все достаточно хорошо слышать на таком значительном удалении.

Расстояние может быть даже увеличено при использовании специальных селективных фильтров, позволяющих выделять или подавлять сигнал в узких полосах частот.

Это дает возможность повысить уровень полезного сигнала в условиях неизбежно существующих помех. В упрощенном варианте вместо спецфильтров можно применить полосовой фильтр в УНЧ (рис. 4) или воспользоваться обычным эквалайзером - многополосным регулятором тембра, в крайнем случае - традиционным, т.с. обычным, двухполосным, регулятором тембра НЧ и ВЧ.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

дипломная работа

2.1 Выбор схемы малошумящего усилителя

В соответствии с выше приведенными соображениями необходимо, чтобы малошумящий усилитель отвечал следующим техническим требованиям:

коэффициент усиления не менее 20 дБ;

коэффициент шума не более 3 дБ;

динамический диапазон не менее 90 дБ,

центральная частота 808 МГц.

кроме этого имел высокую стабильность характеристик, высокую надежность работы, малые габариты и вес.

Принимая во внимание предъявляемые к малошумящему усилителю требования, проведем рассмотрение возможных вариантов решения поставленной задачи. При рассмотрении возможных вариантов учтем те условия, в которых будет эксплуатироваться приемо-передающий модуль (размещение на борту летательного аппарата и воздействие внешних факторов, таких как перепад температур, вибрации, давление и т.д.). Проанализируем малошумящие усилители, выполненные с применением различной элементной базы.

Самыми малошумящими из усилителей СВЧ являются в настоящее время квантовые парамагнитные усилители (мазеры), которые характеризуются чрезвычайно низкими шумовыми температурами (менее 20 о К) и, как следствие, весьма высокой чувствительностью. Однако в состав квантового усилителя входит криогенная система охлаждения (до температуры жидкого гелия 4,2 о К), имеющая большие габариты и массу, высокую стоимость, а также громоздкую магнитную систему для создания сильного постоянного магнитного поля. Все это ограничивает область применения квантовых усилителей уникальными радиосистемами - космической связи, дальней радиолокации и т.п.

Необходимость миниатюризации радиоприемных устройств СВЧ диапазона, повышения их экономичности, уменьшения стоимости привели к интенсивному применению малошумящих усилителей на полупроводниковых приборах, к которым относятся полупроводниковые параметрические, на туннельных диодах и транзисторные усилители СВЧ.

Полупроводниковые параметрические усилители (ППУ) работают в широком диапазоне частот (0,3…35ГГц), имеют полосы пропускания от долей до нескольких процентов от центральной частоты (типичные значения 0,5…7%, но могут быть получены полосы до 40%); коэффициент передачи одного каскада достигает 17…30дБ, динамический диапазон входных сигналов 70…80дБ. В качестве генераторов накачки используются генераторы на лавинно-пролетных диодах и на диодах Ганна, а также на транзисторах СВЧ (с умножением и без умножения частоты). Полупроводниковые параметрические усилители являются самыми малошумящими из полупроводниковых и вообще из всех неохлаждаемых усилителей СВЧ. Их шумовая температура находится в интервале от десятков (на дециметровых волнах) до сотен (на сантиметровых волнах) градусов Кельвина. При глубоком охлаждении (до 20 о К и ниже) по шумовым свойствам они сравнимы с квантовыми усилителями. Однако система охлаждения увеличивает габариты, массу, потребляемую мощность и стоимость ППУ. Поэтому охлаждаемые ППУ находят применение в основном в наземных радиосистемах, где требуются высокочувствительные радиоприемные устройства, а габариты, масса, потребляемая мощность не столь существенны.

К достоинствам ППУ по сравнению с усилителями на туннельных диодах и транзисторах СВЧ помимо лучших шумовых свойств следует отнести способность работать в диапазоне более высоких частот, большее усиление одного каскада, возможность быстрой и простой электронной перестройки по частоте (в пределах 2…30%). Недостатками ППУ являются наличие СВЧ-генератора накачки, меньшая полоса пропускания, большие габариты и масса, значительно большая стоимость, в отличие от транзисторных усилителей СВЧ.

Усилители на туннельных диодах имеют по сравнению с другими полупроводниковыми усилителями меньшие габариты и массу, определяемые главным образом габаритами и массой ферритовых циркуляторов и вентилей, меньший уровень потребляемой мощности и широкую полосу пропускания. Они работают в диапазоне частот 1…20ГГц, имеют относительную полосу пропускания 1,7…65% (типичные значения 3,5…18%), коэффициент передачи одного каскада 6…20дБ, коэффициент шума 3,5…4,5дБ на дециметровых волнах и 4…7дБ на сантиметровых, динамический диапазон входных сигналов составляет 50…90дБ. Усилители на туннельных диодах применяются в основном в устройствах, где на малой площади необходимо разместить большое количество легких и малогабаритных усилителей, например в активных фазированных антенных решетках. Однако в последнее время усилители на туннельных диодах из-за присущих им недостатков (сравнительно высокий коэффициент шума, недостаточный динамический диапазон, малая электрическая прочность туннельного диода, сложность обеспечения устойчивости, необходимость развязывающих устройств) интенсивно вытесняются транзисторными усилителями СВЧ.

Основные преимущества полупроводниковых малошумящих усилителей - малые габариты и масса, малое энергопотребление, большой срок службы, возможность построения интегральных схем СВЧ - позволяют использовать их в активных фазированных антенных решетках и в бортовой аппаратуре. Причем наибольшую перспективу имеют транзисторные усилители СВЧ.

Успехи в развитии физики и технологии полупроводников сделали возможным создание транзисторов, обладающих хорошими шумовыми и усилительными свойствами и способных работать в диапазоне СВЧ. На основе этих транзисторов были разработаны СВЧ малошумящие усилители.

Транзисторные усилители в отличие от усилителей на полупроводниковых параметрических и туннельных диодах являются не регенеративными, поэтому обеспечить их устойчивую работу значительно проще, чем, например, усилителей на туннельных диодах.

В МШУ СВЧ применяются малошумящие транзисторы, как биполярные (германиевые и кремниевые), так и полевые с барьером Шоттки (на кремнии и арсениде галлия). Германиевые биполярные транзисторы позволяют получить меньший коэффициент шума, чем кремниевые, однако последние более высокочастотны. Полевые транзисторы с барьером Шоттки превосходят биполярные транзисторы по усилительным свойствам и могут работать на более высоких частотах, особенно арсенид-галлиевые транзисторы. Шумовые характеристики на относительно низких частотах лучше у биполярных транзисторов, а на более высоких - у полевых. Недостатком полевых транзисторов являются высокие входное и выходное сопротивление, что затрудняет широкополосное согласование.

Изложенные выше соображения позволяют наметить стратегию синтеза малошумящего усилителя на полевом транзисторе, в монолитном интегральном исполнении.

Как было выбрано ранее МШУ построим на основе модуля MGA - 86563. Схема электрическая принципиальная приведена на рисунке 2.1. Типовая схема включения приведена на рисунке 2.2: Рисунок 2.1 Схема электрическая принципиальная MGA-86563. Рисунок 2...

Высокочастотный приемный тракт

В результате проведенной работы был исследован малошумящий усилитель MGA86563. Исследование АЧХ МШУ производилось с помощью стенда СНПУ-135, прибора для исследования АЧХ Х1-42.Схема соединений для измерения АЧХ приведена на рисунке 4...

Измерительный преобразователь переменного напряжения в постоянное

Для реализации схемы выпрямителя применим сдвоенный быстродействующий ОУ с полевыми транзисторами на входе типа КР140УД282. Его параметры приведены в табл.5, а схема включения - на рис.8...

Малошумящий интегральный усилитель

Моделирование в системе MICRO-CAP измерительных преобразователей на основе датчиков температуры

Исходя из здания необходимо построить трехпроводную схему (2 варианта) измерения температуры при помощи ТПС с использованием источника тока(см. рис 6.2.1). № Схема Напряжение на входе ИУ при 2 Рис.6.2.1...

Проектирование усилительной части устройства

Воспользуемся схемой, представленной на рис. 5, для расчета усилителя мощности. При расчете УМ заданными величинами являются: a). Номинальная мощность в нагрузке Рн = 0,4 Вт; b). Сопротивление нагрузки Rн = 100 Ом...

Процесс моделирования работы коммутационного узла

Так как синфазная помеха не превышает 10В и коэффициент усиления не большой, то достаточно будет взять простейший дифференциальный усилитель. Схема простейшего дифференциального усилителя представлена на рисунке 5...

Разработка измерительного преобразователя

Рисунок 2 Предварительный усилитель (ПУ) представляет собой операционный усилитель (ОУ) с отрицательной обратной связью. Схема включения (ПУ) показана на рисунке 2...

Расчёт импульсного усилителя

Импульсный усилитель напряжения является предварительным усилителем сигнала, обеспечивающим нормальную работу УМ...

Синтез инвертирующего усилителя

Схема инвертирующего усилителя с отрицательной обратной связью: Рисунок 1 - Базовая схема инвертирующего ОУ с ООС...

Для удобства разработки и проведения расчетов блоки ПУ, УНЧ и УВЧ2 были объединены в общую схему. В основу построения были взяты микросхема 140-УД20А и биполярные транзисторы КТ817А...

Сравнительная характеристика технических данных радиостанций

На рисунке 7.5 приведена электрическая принципиальная схема предварительного усилителя, усилителя низкой частоты и усилителя высокой частоты УВЧ2. В основе схемы лежит микросхема 140-УД20А, которая состоит из операционных усилителей (Da1...

Схема микрофонного усилителя

Определим полный коэффициент усиления, исходя, из которого выбирается количество усилительных каскадов где полный коэффициент усиления; эффективное номинальное напряжение на выходе; эффективное номинальное напряжение на входе...

Широкополосный усилитель

Начиная разработку усилителя необходимо руководствоваться общими соображениями экономической целесообразности его производства (минимизация активных приборов, элементов и комплектующих изделий по их количеству...



 

Возможно, будет полезно почитать: